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Magnetic field due to helical currents on a torus 
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Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, ACT, 2600, Australia 

Received 22 January 1981 

Abstract. By means of coordinate transformations on different forms of the Biot-Savart 
law, general expressions are derived for both the magnetic vector potential and the magnetic 
field in two systems of toroidal coordinates. For the cases of interest, it is shown that the 
integrations can be performed exactly in proper toroidal coordinates, whereas approxima- 
tions are necessary in quasi-toroidal coordinates. Different forms of helical windings are 
discussed. The results are applied to the calculation of a stellarator magnetic field of 
arbitrary polarity I ,  produced by a distribution of helical current filaments on a torus. The 
components of the magnetic field are given in terms of infinite series. In the intermediate 
region, away from the external separatrices and the central region, simple analytic expres- 
sions for the magnetic surfaces are obtained. 

1. Introduction 

It was suggested (Spitzer 1958) that steady state plasma confinement is possible, in 
principle, in magnetic field configurations produced by a distribution of helical current 
filaments on a torus. This was demonstrated most clearly (WVII team 1980) by the 
recent currentless operation of the Wendelstein VII-A stellarator, in which plasma 
ionisation and energy input were maintained by the injection of fast neutral atoms. In 
view of the practical advantages which can be accrued from a configuration which does 
not need a toroidal current induced in the plasma, it seems worthwhile to re-examine 
the confinement properties of pure toroidal traps such as torsatrons and stellarators in a 
totally ‘non-tokamak’ mode of operation. In such toroidal devices, the vacuum 
magnetic field plays a central role. It is the purpose of this paper to study non- 
axisymmetric vacuum magnetic fields inside a torus. 

Early work on stellarator fields is based on linear helically symmetric systems 
(Johnson et a1 1958) and toroidal effects only enter in second order in the classical 
stellarator expansion (Greene and Johnson 1961). In a different expansion, Dobrott 
and Frieman (1971) allow toroidicity to have a stronger effect on the field configuration. 
However, in expansion schemes, it is necessary at the outset to make explicit assump- 
tions about the relative magnitudes of the relevant quantities such as the number of 
toroidal periods, the ratio of the helical field strength to the superimposed toroidal field 
strength etc. This limits the usefulness of such methods in parametric studies for design 
and optimisation purposes. Moreover, it is difficult to justify the consistency of the 
ordering for all regions inside the torus. For example, the expansion studies indicate 
that there is a single circular magnetic axis inside an 1 = 3 stellarator magnetic field, 
whereas in fuller toroidal treatments both theoretical analysis (Aleksin 1963) and 
numerical computations (Gibson 1967, Blamey et a1 1981) show that there are, in 
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general, two circular magnetic axes. It seems necessary to assess toroidal effects in a 
more general context. A principal objective of this paper is to use toroidal coordinates 
to establish a general mathematical framework where toroidal effects are taken fully 
into account and the physical and geometrical parameters are left arbitrary. 

Toroidal coordinates have been used by a number of authors to calculate magnetic 
fields due to helical current filaments on a torus. Kovrizhnykh (1963) took advantage of 
the well known solution of Laplace’s equation in (proper) toroidal coordinates to obtain 
a magnetic scalar potential. But he averaged over the toroidal angle to obtain a 
two-dimensional boundary-value problem. Bhadra (1968) pointed out that the scalar 
potential method does not really simplify the problem, since to satisfy general boundary 
conditions on the toroidal surface the problem remains three dimensional. He  consi- 
dered the calculation of the magnetic vector potential directly from the Biot-Savart law. 
More systematic applications of this method to calculate the magnetic vector potential 
were undertaken by Tayler (1965) and Mirin et a1 (1976), who made extensive uses of 
expansions in toroidal harmonics. However, the calculation of the components of the 
magnetic field from the magnetic vector potential in toroidal coordinates still remains a 
rather onerous task and these authors did not present them. In this paper, the magnetic 
field is calculated directly from another standard form of the Biot-Savart law, which is 
derived in toroidal coordinates. Aleksin (1963) also used this direct approach, but he 
used quasi-toroidal coordinates which give rise to difficult integration problems, 
limiting the theory to second order in the inverse aspect ratio. The origin of this 
difficulty is discussed below. 

In the next section, toroidal coordinates and quasi-toroidal coordinates are intro- 
duced in the standard way and coordinate transformations are discussed. These are 
applied to different forms of the Biot-Savart law in § 3 to derive general expressions for 
the magnetic vector potential and the magnetic field in both toroidal and quasi-toroidal 
coordinates. The relative merits of the two systems of coordinates are indicated. This is 
followed, in 84, by a description of various helical windings on the torus and the 
relationships among them are discussed. In § 5 ,  the formal expressions are applied 
specifically to the study of a stellarator field of arbitrary polarity 1 produced by a 
distribution of helical currefit filaments. On carrying through the integrations, the 
magnetic field is reduced to the evaluation of infinite series involving generalised 
Legendre functions. By appropriate truncation of the infinite series, approximate 
analytic expressions, accurate to the lowest orders of the inverse aspect ratio, are 
obtained. In the final section, the theoretical advances are summarised and discussed, 
and possible further developments and applications are indicated. 

2. Toroidal coordinates 

In the case of calculation of magnetic fields due to helical current filaments on the 
surface of a torus (with circular cross section), the mathematical simplifications that 
result from the use of toroidal coordinates are: (a) the description of the helical windings 
is simplified; (b) the labour involved in the integrations is reduced. 

2.1. Coordinate systems 

Two systems of orthogonal coordinates have been used to describe toroidal geometry: 
(a) quasi-toroidal coo,rdinates (e.g. Mercier 1962), and (b) toroidal coordinates (e.g. 
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Moon and Spencer 1971). A system of quasi-toroidal coordinates (p ,  p, 5) can be 
defined (see figure 1) where the p = constant surfaces form a set of nested concentric 
toroidal surfaces with respect to the circular axis R =Ro.  These coordinates are 
suitable only for describing regions interior to p = Ro, since there are ambiguities when 
p > Ro. But because of their simple geometric interpretations in the restricted region of 
interest, they have been commonly used for the study of equilibrium and stability of 
confined toroidal plasmas. Another system of toroidal coordinates (7,6, p) can be 
defined where the 7 =constant surfaces form a set of nested, but non-concentric, 
toroidal surfaces around the limit circle defined by R = a .  These coordinates are 
applicable to the whole Euclidean space, but they are much less familiar, with a less 
transparent geometric interpretation. 

l ; l  , ,---R- 
I 
r RO ’ 

Figure 1. Cross section of toroidal surfaces showing schematic definitions of toroidal 
coordinates (q, 0, c p )  and quasi-toroidal coordinates ( p ,  cp, c). 

The relationship between these coordinates and Cartesian coordinates can be 
written as follows: 

x = (Ro + p  COS l) COS ~p = hu COS p, 

y = (Ro+p cos l) sin cp = hu sin cp, 

z = p sin = h sin 6, 

where h 3 ag, g =_ (v  -cos e)-’, v =cosh 7 and U =sinh 7. The differential line ele- 
ments in the two systems of coordinates are 

d l  = ep dp + e , ( R o + p  cos l) d p  +erp dl ,  

d l  = h(e ,  d v  + eo d6 + e,u dcp), 

(2) 

(3) 

which yield, by orthogonality, the respective metrics 

d12 = dp2+  ( R o + p  cos o2 dcp2+p2 d12, 

d12 = h2(dV2+de2+ u 2  dcp2). 
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It is convenient for mathematical purposes to introduce auxiliary coordinates ( r ,  x) 
which are directly related to (q, 0) coordinates by the definitions 

Rlr = cosh q, 

COS x = g ( ~  COS e - I), 

a l r  = sinh q, 

sin x = gu sin 8, 

where r and x have simple and obvious geometrical interpretations (see figure 1). It 
follows immediately from these expressions that 

(7) 

The distance d between two points (p,  cp, 5) and ( p ’ ,  cp’, C’)  is given by (Aleksin 1963) 

2 gs in2e+cosX==cos0 .  gu -cos x = v, 

d 2 = p 2 + p ’ 2 - 2 p p ’ c o s ( I . - ~ ’ ) + 4  sin’($/2)(Ro+p cos l ) ( R o + p ’  cos [‘), (8) 

where 4 = cp‘ - cp. Similarly, the distance d between two points (q, 8, cp) and (q’, e’, 9’) 
is given by (Hobson 3931, Mirin et a1 1976) 

d2=2hh’[uU’-~4~’cos  C COS(^ - e’)], (9) 

where h’=a/(u’-cos O’), u’=cosh q’ etc. 

2.2. Coordinate transformations 

The transformation (1) between Cartesian coordinates x i  with Latin suffixes and either 
system of curvilinear coordinates T,  with Greek suffixes can be expressed as 

X i  = X i ( T , ) .  (10) 

On defining h, (a = 1, 2 , 3 )  by d12 = h: dT? -t h: dr:+ h i  d r i ,  standard transformation 
theory can be used to show that the matrix J,, defined by 

Jia (l /ha)(axi/aTa) (no summation) 

is orthogonal: 

Jai Jip = Sap, Jj,J,j = Sij, 

where Sap and S,, are the Kronecker deltas and the summation convention is implied 
unless stated otherwise. The orthonormal basis vectors e, in Cartesian coordinates are 
related eo the orthonormal basis vectors e, used in (2) and (3) by 

e ,  = Jl,eu, e ,  = J,,e,. (13) 

Hence for any arbitrary vector A = A,e ,  = A l e , ,  (13) gives the transformation laws for 
the components, 

A,  = J,A,, A, = J,,A,. (14) 

Direct evaluation of (111, using definitions (1) and (lo),  shows that for quasi-toroidal 
coordinates 

cos 5 cos cp -sin cp -sin 5 cos cp 

Ji, = cos l s i n  cp cos cp -sinlsincp i sin 0 cos [ 
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whilst for toroidal coordinates 

-cos x cos cp -sin x cos -sin cp 

Ji, = -cos x sin cp -sin ,y sin cp cos cp i -sin x cos x 0 

The elements of (16) were also written down by Mirin et a1 (1976)’ but without the 
convenient benefit of the angle x. Here, the orthogonality of Ji, is easily verified. 

3. Biot-Savart law 

The magnetic vector potential A defined by B = V x A and V .  A = 0 satisfies the 
differential equation 

V 2 A  = -po j ,  (17) 

where j is the source current density and SI units are used. Only in Cartesian 
coordinates is this equation separable, and it has a formal solution 

r-r‘l 

where / r  - r‘1-l is the Green function and the integration is performed over all points r’ 
of the source current density. If the source current density has a singular distribution in 
the form of a current filament of total current I, then (18) becomes 

where the line integration is now taken along the current filament. From this, the 
magnetic field (more correctly the magnetic induction) is given by 

B ( r )  = - 

Both (19) and (20) have been called the Biot-Savart law. It is clear from the above 
derivation that they are valid only in Cartesian coordinates. On account of the toroidal 
geometry of the current filaments, it is convenient to re-express the Biot-Savart law in 
quasi-toroidal and toroidal coordinates. 

3.1. Magnetic vector potential 

Application of the transformation laws (14)-( 19) show 

where d = Ir - r’/ and the tensor Uup is defined by 
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Calculations from (15) show that, in the case of quasi-toroidal coordinates, 

-cos f sin @ -cos [ sin [' cos $ +sin [ cos [' 

sin f sin f '  cos IC, + cos [ cos [' 

cos [ cos 5' cos $ +sin [ sin [' 

-sin [ cos 6' cos @ +cos f sin [' 
cos [' sin # cos l/l -sin f '  sin @ (23) 

sin [ sin @ 
UaP = 

where (I,=cp'-cp. Similarly, application of (16) shows that in the case of toroidal 
coordinates 

(24) 
cos x cos x' cos 11, +sin x sin x' cos x sin x' cos $ -sin x cos x' cos ,y sin $ 

sin x cos x' cos 9 - cos x sin x' sin x sin x' cos $ +cos ,y cos x' sin x sin # 
-cos x' sin $ -sin x ' s in  $ cos * 

It is apparent from (2) and (3) that, if the current filament lies on a toroidal surface, then 
dlb = 0 and dl; = 0 and the number of integrals in (21) is reduced. 

If the current filament lying on the p = po surface winds according to the relationship 
dl'ldcp' = v(cp') then equations (2), (21) and (23) can be used to show 

where d is determined by (8) and 

a, = -I?' cos f sin (I, +pov(sin f cos f'-cos 5 sin 5' cos +), 

a+ = I?' cos + -pOu sin f '  sin 4, 
ai =I?' sin f sin $ +pov(cos 5 cos C'+sin 5 sin 5' cos $1, 

(26) 

with E' = Ro+ po cos f '  and 4" = 5'' v(@) d@. In the same way, if the winding law of the 
current filament on the 77 = qo surface is determined by dO'/dp' = v(cp'), where v(cp') is 
again arbitrary, then the components of the magnetic vector potential in toroidal 
coordinates are given also formally by (25), but d is now given by (9) and 

a ,  =  COS x sin x' cos $ -sin x cos x') + U' cos ,y sin +, 
= v(sin x sin ,y' cos Sl, +cos x cos x') + U' sin ,y sin 4, (27) 

a ,  = -v sin x' sin 4 +U' cos $, 

where 9 = cp'-cp as previously. Only the A,  component in toroidal coordinates was 
obtained by Bhadra (1968). 

3.2. Magnetic field 

Although the magnetic vector potential A, being related to certain invariants of the 
magnetic field configuration, is of considerable interest in itself, to calculate the 
magnetic field B from A requires a further vector differentiation in B = V x A. In 
principle, this is straightforward, but in practice the expression for A is already so 
complicated on integration that the procedure is prohibitively cumbersome. 
Apparently no author has carried this calculation to any detail. An alternative method 
pursued here is to use the Biot-Savart law in the form given by (20), which is 
tantamount to performing the vector differentiation before carrying out the integration 
over the source currents. 
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Again, application of transformation laws (14)-(20) shows 

where d = /r  -r'l and 

w,p E & i j k J i , J & j ( x k  - x i ) ,  (29) 

with &ijk being the permutation symbol. After some algebraic manipulations it can be 
shown that 

Wap = WUp(r,  r') = Tap(r, r ' )+  Tpn(r, r'). 

l? = Ro+p cos f ,  

(30) 

In the case of quasi-toroidal coordinates, on defining 

R' = Ro+p '  cos f ' ,  (31) 

calculations show 

-Ro sin [ cos [' sin $ - p  sin 5 cos [' cos $ + l? sin 5' 
p sin [ sin $ 

Ro sin 5 sin 5' sin $ p sin [ sin [' cos @ +I? cos [' 

-(Ro cos [ + p )  cos 5' sin (I 

(Ro cos 5 + p )  sin [' sin $ 

-(Ro cos [ + p )  cos * j , (32) 

where $ = cp' - cp. Similarly, in the case of toroidal coordinates, 

-U sin 0 cos x' sin $ 

U cos 0 cos x' sin $ 

sin 0 cos x' cos * - U sin x' 

-U sin e sin x' sin $ 
U cos e sin x' sin (/I 

sin 0 sin x' cos (I + U cos x' 

U sin 0 cos I / /  

sin e sin (i, 
-U cos e cos @ j , (33) 

where uses have been made of relationships (7). Hence, on using equations (2) and 
(28)-(32), the magnetic field which corresponds to the vector potential given by (25) 
and (26) reads 

where 

b, = R'[l?' sin f - (Ro sin f +po cos f sin 5') cos $1 
+pov sin $[Ro cos(f - f ' )  + p o  cos I ] ,  

- pov sin $[Ro sin(f - 5') + po sin f - p sin 5'1, 
bc = l?'[R' cos f - (Ro cos f - po sin f sin f '  + p )  cos $1 

(35) 
b, = 2' sin $ ( p  sin f - P O  sin 5') - pov[R cos 5' + ( p  sin f sin f '  - Ro cos f '  - po) cos $1, 
with l? = Ro + p  cos f ,  I?' = Ro + po cos f '  and d determined by ( 8 ) .  Equivalent expres- 
sions were written down by Aleksin (1963), whose paper contains, however, a number 
of serious misprints, particularly in the expression for the B, component. Similarly, on 
using (3), (28)-(30) and (33), the magnetic field which corresponds to the vector 
potential given by (25) and (27)  can be shown, after some algebra, to read 
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where S = (21‘-cos B‘)”’[vv’-uu’ cos (I,-cos(@-8’)]3/2, 

b, =sin B(vu‘ cos (I/ - uu ’ )  - u[v cos(B -e‘) sin (I, +sin(@ -e‘)  cos (I,] 

+ Y cos 8‘ sin (I, -sin 8’ cos (I,, 

bs =cos ~ ( U ’ V  - uu‘ cos i,b) - u[v sin(@ -0‘) sin (I, -cos(8 - e’) cos (I,]-- U ’ ,  (37) 

b, = cos B’(v/u’)(u’u -- vu‘ cos (I,) + ( v ’  sin 0 - v sin e’) sin 4 
+ Y cos(@ - 6’ )  cos (I, -sin(B - 8 ‘ )  sin (I, - vu/u‘, 

with (I, = rp’ - cp. This result, which does not seem to have been derived in the literature 
before, will be shown to lead to a tractable method for calculating stellarator-type 
magnetic fields. The principal difficulty in the calculation of the magnetic field due to a 
helical current filament on a torus resides in the remaining integration, which is made 
difficult by the nature of the denominators of the integrand. The only known method is 
apparently to expand the integrand in terms of infinite series of generalised Legendre 
functions, with the angular variables appearing as harmonics. A fundamental expan- 
sion theorem (Hobson 1931, Robin 1958) reads 

where the Neumann symbol is defined by 
quasi-toroidal coordinates, to use (38), (8) is written in the form 

= 1 and E ,  = 1 otherwise. In the case of 

d- l=D~l(p- -COS(I , ) - l / ’ ,  (39) 
2 where D2=2(Ro-i-p cos f)(Ro+p‘eos 5’) and p = 1 +A/D2, with A = p  

+ p” - 2pp’ cos(f - f’). It is evident that the argument of the Legendre function 
Qn-112(p) appearing in (38) is quite complicated in this case. In order to perform the 
integration, the Legendre function Qn-1/2(p) needs to be further expanded to make the 
angular dependence explicit. It was found necessary (Aleksin 1963) to make the 
approximation 0’ = 2 R t  so that the integration is tractable. This limits the accuracy of 
the theory to second order in the inverse aspect ratio. 

On the other hand, in the case of toroidal coordinates, due to the applicability of an 
addition theorem, the denominator can be expanded exactly. The use of (38) shows 

2 J 2  
[VU’ - UU’ COS (I, --cos(e - e’)]”’= - E,,Q,-~&) COS n ( 0  - e‘), 

IT n = O  

where in this ease p 
reads 

vu‘- uu’ cos i+b. The relevant addition theorem (Hobson 1931) 

a 

Qn- i / z (p )  = 1 & , ( - ~ ) ’ Q S ~ - ~ / Z ( ~ ) P ~ S ~ / Z ( ~ ’ )  COS ( v > v ’ ) ,  (41) 
s = o  

where PnS1/2 and QS1-1/2 are generalised associated Legendre functions of the first and 
second kind respectively. These expansions were used by Tayler (1965) and Mirin et a1 
(1976) in their calculation of the magnetic vector potential. To use these to calculate 
the magnetic field, however, one needs to proceed a little further, on account of the 
form of S in (36). The differentiation of (40) with respect to p yields 
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where the dot denotes derivative with respect to the argument. Moreover, it is easy to 
see 

where A vfu/uut.  It follows from the definitions v =cosh 7 etc that A > 1, whenever 
7 > 7’. Applying the fundaniental expansion theorem (38) to the factor (vt-cos Of)-”’ 
appearing in S-l in (36) and collecting the results (41)-(43), one finds an exact 
expansion for the denominator of (36): 

cos s+ 00 

S-’ = ah,, cos nzetcos n ( e ’ - e )  
m,n,s=O A -COS +’ (44) 

where the coefficients ah,, are defined by 

Hence the problem of calculating the magnetic field due to a helical current filament 
given by (36) has been reduced to elementary integrals over trigonometric functions. 
Since the expansions are exact, there is no limit to the accuracy of the method. 

4. Helical windings 

A straight circular cylinder has a natural central axis and hence a uniform helical 
winding of arbitrary constant pitch has a clear and unambiguous meaning. Moreover, 
such windings are members of the family of geodesic curves on the cylindrical surface. 
In the case of a torus, depending on how the poloidal angle is defined, there is more than 
one definition for a uniform helical winding. Furthermore, on account of another 
periodicity in the toroidal direction, a single helix of arbitrary constant pitch can cover 
the toroidal surface without closing on itself. For practical reasons, a helical current 
winding is required to close upon itself after a finite number of turns around the torus. 
There are then geometric limitations on toroidal helical current windings. 

4.1. Geodesics 

From a certain mathematical point of view, geodesics on the torus form a natural 
analogue to uniform helices on a straight circular cylinder (Tayler 1965). Their 
equations may be found directly by taking variations of the line element given by either 
(4) or ( 5 ) .  In toroidal coordinates, ( 5 )  can be written 

dl  = h [ l  + ~ ~ ( d q ~ / d ~ ) ’ ] ~ / ~  dOZF(0,  dqJ/dO) de. (46) 

From the variational principle S 5 dl = 0, the Euler-Lagrange equation, which here 
simply reads aF/a(drp/dO) = constant, yields the geodesic equation 

(47) 
dqJ K/ U - - -_I___ 

de - ( h 2 ~ 2 - K 2 ) 1 / 2 ’  

where K is a constant. Equivalently, in quasi-toroidal coordinates, the geodesic 
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equation reads 

where K is a constant with lK 1 < Ro - p o .  On substitution t = K/(Ro  + p o  cos t) ,  it can 
be shown that 

dcp Pot  
dt 
-= 

a [( 1 - t ) (b  - t ) ( t  - c)( t + 1)]1’2 ’ (49) 

where b = K/(Ro-po)  and c = K/(Ro+po).  The solution of this equation can be 
expressed as the sum of two incomplete elliptic integrals (Gradshteyn and Ryzhik 1965, 
p 243). Hence, in general, the geodesic curves on the torus have a rather complicated 
mathematical form. On introducing a constant U by 

KPOU Ro(Ri - K2)”*, (50 )  

it can be shown that provided u 2  >> 2Ro/po >> 1, the right-hand side of (48) can be 
expressed as a rapidly converging series, 

*=:[l-(gc7 R o  ) c o s t +  . . .  I , 
d l  P o U  

which on integration yields 

where cpo is a phase constant. It is evident that these curves approach the geodesics of a 
straight circular cylinder, provided the pitch length is sufficiently short, v 2  >> 2Ro/po, to 
overcome the effects of toroidal curvature. 

4.2. Uniform helices 

In quasi-toroidal coordinates, the poloidal angle is defined with respect to the central 
axis of the toroidal chamber. Hence a natural definition for a uniform helix in this 
system of coordinates reads 

dt/dcp = U =constant. (53) 

By comparison with (51), it can be seen that this equation may be regarded as the 
geodesic equation in the limit of zero toroidal curvature. Indeed, the equation for a 
helix on a straight circular cylinder of period length L may be cast in the form (53), 
provided one identifies L = 2rR0/u.  The classical helical windings, and in particular 
the classical stellarator windings, obey this relationship (Aleksin 1963, Mirin et a1 
1976). It is clear from the above discussion that such windings are really cylindrical 
windings imposed on the torus, with the additional condition that U must be a rational 
number for closure of the helical windings. 

In toroidal coordinates, on the other hand, the natural definition for a uniform helix 
reads 

deldcp = U =constant. (54) 

Such windings were considered by Tayler (1965), and they are the windings of the 
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‘force-free’ toroidal solenoid (Koryavko and Litvinenko 1979). Unlike those defined 
by (48) and (53), such helices incline at constant angles to the generatrix of the toroidal 
surface. On account of this and other mathematical properties of the windings, and in 
order to distinguish them from classical windings, these will be called canonical 
windings. For example, it may be shown from (1) that for the special case v = 1, a 
canonical helical winding on the torus can be described by the equation 

( x - p O ) ’ + y 2 + z 2 = R ; .  ( 5 5 )  

That is, the curve is a circle of radius Ro, centred at x = PO,  y = z = 0, with its plane tilted 
to the equatorial plane at an angle sin-’(po/Ro). Such circles are called Villarceau 
circles by Gourdon et a1 (1968), who studied numerically the magnetic fields of 
stellarator and torsatron configurations formed by such circles. 

The above two classes of uniform helices by no means exhaust all the reasonable 
possibilities. A poloidal angle U (see figure I) may be defined with respect to the 
limiting circle of the system of toroidal coordinates. From geometric relationships, it 
may be shown (appendix 1) that on the p = po toroidal surface 

2 u = 0 + y .  (56)  

Hence a uniform helix defined by du/dq  = constant can be regarded as an arithmetic 
mean between those defined by (53) and (54). 

Evidently, classical windings (53) may be expressed in toroidal coordinates and 
conversely canonical windings (54) may be expressed in quasi-toroidal coordinates. 
From the definitions (6), it can be shown (appendix 1) that on the toroidal surface p = po 
or rl = 7 0  

where cr = [(Ro - a)/@,,+ a)]”’ = [l - (1 - E ~ ) ~ / ~ ] / E ,  with E = p o / R o  being the inverse 
aspect ratio of the toroidal chamber. Hence, in quasi-toroidal coordinates, the canoni- 
cal winding relation (54) may be written as 

(58 )  

where (po is a phase constant and cr << 1 usually. Thus a canonical helical winding 
appears as a specific type of modulation of the classical helical winding. Clearly the 
modulation can be generalised by allowing the multiplicative constants of the harmonic 
functions to take values not necessarily those in (58). By optimisation of certain 
properties of the magnetic field configuration, Gourdon et a1 (1970) have suggested 
certain functional forms for these multiplicative factors, which give rise to the so-called 
ultimate winding. In the remainder of this paper only canonical windings are consi- 
dered; other windings may be considered as modulations of these. 

v( (p-qo)=t-2a  s i n l + a 2 s i n 2 1 - .  . . , 

5. A canonical stellarator field 

The formulae of previous sections are now applied to the calculation of a stellarator 
magnetic field due to a distribution of current filaments whose winding relationships 
satisfy (54). A stellarator of polarity 1 has 1 pairs of helical conductors with alternating 
directions of currents, together with a superimposed toroidal magnetic field. In 
practice, in order to carry an appreciable current, the helical conductors are not 
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filamentary but have finite physical dimensions. Partly to simulate this reality, and 
partly to simplify the mathematics, we consider a sinusoidal distribution of helical 
current filaments closely spaced on the torus. In effect, the current (I) passing through a 
given meridonal plane, which can be represented by a sequence of positive and negative 
step functions, is now replaced by a sinusoidal function in the poloidal angle (e) (see 
figure 2). For such a distribution of infinitesimally thin filaments, the current passing 

I 
e 

Figure 2. Current distributions on a meridonal plane. The step functions are replaced by a 
sinusoidal function. 

through an arc deb on a meridonal plane can be written as 

d I  = I o  COS lob deb, (59 )  

where the solution of (54) is written in the form Ob = 0’- vcp’ on the chamber surface 
and Io is a constant. It is evident from (59) that there is zero net current flowing through 
each meridonal plane, a fact which makes a modular construction of stellarator 
windings possible. On summing up all current filaments specified by (59),  the resultant 
magnetic field from ( 2 8 )  reads 

where the line integral goes once around the toroidal direction. It is convenient to 
change the variable of integration from Ob to 8‘. The use of (36) in (60) shows that the 
resultant ma.gnetic field can be expressed as 

257 

COS i ( e r -  V p D ) b ,  B, = u ’ ( u  -cos 8)’” [[ de’dcp‘ 9 

8mJZ S 
0 

where b, and S are given by (37). The dosure of the current windings required v to be a 
rational number. If v = p / l ,  where p is an integer incommensurate with I ,  then a single 
filament makes p turns the short way and closes on itself after I turns the long way 
around the torus. In some special cases, such as the case of the Villarceau circle where 
Y = 1, v is an integer. In these cases, a single filament closes on itself after only one turn 
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the long way around the torus. Irrespective of whether Y is an integer or a rational 
number, equation (61) is applicable generally to a canonical stellarator of arbitrary 1. 

5.1. A series representation 

Proceeding with the integrations in (61), one conveniently rewrites it in the form 

B, = (p ,o~o /87raJZ)ur (v  -cos  cos OB: +sin C P B ~ ) ,  (62) 

where CP = 18 -p(p and 
27I 

cosI(8’-e) s inl(e’-e)  
-sin I(  8’ - e) cos I (  e’ - e) 

0 

From (371, (44) and (63), it is seen that it is simplest to do first the $-integrations which 
have the basic elementary form 

27r exp ( - N p )  
A -COS $ sinhp ’ d* = 

where one introduces p = -ln[A - (A - l)’”] = ln[A + (A - l)”’]. It should be noted 
also that cosh p = A = v’u/vu’ and sinh /3 = ( A 2 -  1)”’ = (U’- v’2)1’2/vu‘ .  On perform- 
ing the $-integrations, (63) can be re-expressed as (BB) = [0271 de’ &I(  

where one defines 

(65) 
cos I ( @ -  e) sin l ( 0 ’ -  

-sin l(0’- 8 )  cos l ( 0 ’ -  

m 

&’ = 2 7  1 a;,, cos me’ cos n (e‘ - 6 )  exp(-sp), (66) 
m,n,s=O 

and 
6; = u ( ~ ~ - v ~ ~ ) - ~ ’ ~ [ u u ~  sin(e’-e)+v sin o-v‘sin e‘], 
6: = ( U ~ - U ~ ~ ) - ~ / ~ [ U ~ ~ ’ ~ O S ( ~ ~ - ~ ) - U U ‘ ~ - C ~ S  e ( v 2 - ~ f 2 ) ~ ,  

6; = V U  (U’ - U ’ ~ ) - ~ / ’ [ U ’   COS(^'- e) - V I ,  

6; = v [ ~  cos(ef-e)-cos e ’ ] ,  
& = --vu sin(8’- e ) ,  
& = v sin e’- U‘ sin 6 -sin(er - e). 

(67) 

The remaining 8’-integrations are elementary. On introducing, for brevity, the 
coefficients 

m 

a,” = 1 a:,, exp(--sp), (68) 
s =o 

and defining 7 = 8’ -  9, the @-integrals are of the basic types 

27I 

I2 = 21r f a,” lo cos m(r  + e )  cos nr  cos lr (69) 
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Direct elementary integration shows 

L. m,n f 

I T L  
1, 

1, 

J - c a;  sin me ( a ; ( [ - m ) + l  *(l-m)+1 
- 8 ,  

- 8, 

- ?- m,n * 
2 

7T J~ =- a;  cos me ( ~ ; ( I - l ) * m  *(l+l)*m 

2 m,n * 
where the last sum in each I, and J, ( i  = 1,2,  3)  indicates taking all combinations of 
signs. By definition, I ,  m and n are positive and hence some of the Kronecker deltas 
vanish necessarily. The components BS, and B: are now seen as functions of the six 
integrals given by (71), 

BZ = BS, (6, J , ) ,  B: = B:(I,, J,). (72) 

From the mathematical structure of (65 ) ,  it can be seen that 

Bs,(I,, J I )  =BZ(-J,, I [ ) .  (73) 
That is, B: (I,, J,) can be obtained from BS, (I,, J,) on replacing each I, by -J, and each J ,  
by I, ( i  = 1 , 2 , 3 ) .  It suffices therefore to record B:(I,, J,), which can be found from 
applying the definitions (69) and (70) to (65)-(68). These read 

B;  = ~ ( u ~ - ~ ~ ~ ) - ~ / ~ c o s h p p [ u u ’ I ~ + ~ I ~  sin e-u’(13cos 6+12sin e ) ]  
+ v sinh pp  (uJ2 - J2 cos 0 + J3 sin e), 

I 2  -1/2 (74) 
B‘s = ( u 2  - U ) cosh p p [  u 2 ~ ’ I 2  - uut2I1 - II cos 8 ( u 2  - u ’ ~ ) ]  - vuJ3 sinh pp, 

B‘, = V U ( U ~ - U ’ ~ ) - ~ / ~  coshpp(u’I2-UI1) 

+sinhpp[v(J3 cos 6 + J 2  sin 8 ) - v ’ J 1  sin O-J,]. 

The calculation of the magnetic field of a canonical stellarator has now been reduced 
exactly to the evaluation of the infinite series in the six integrals I ,  and J, ( i  = 1,2,  3). By 
appropriate truncation of the series, any desired degree of accuracy can be obtained. 

5.2. Approximate magnetic surfaces 

On a more detailed examination of the magnetic field represented by (62), (71), (73) 
and (74), it can be seen that in certain regions such as those specified by U = u ‘ ~ ,  several 
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terms of nearly equal magnitudes are required to represent each of the integrals given 
by (71). Consequently, a relatively large number of terms are required to represent 
each component of the magnetic field to any degree of accuracy. Under these 
circumstances, the calculation of magnetic surfaces involves rather laborious analysis, 
which will be postponed for presentation elsewhere. For a simpler illustration of the 
properties of the above series representation, attention is here restricted to the 
intermediate region specified by v f 2  >> v >> U'. Physically, this region is removed from 
the influences of both internal and external separatrices, and mathematically, the series 
in (71) have dominant terms and simple approximations are possible. In this case, 
useful approximate expressions for the magnetic field and magnetic surfaces can be 
found. 

On retaining only the lowest-order terms (m = 0) in the inverse aspect ratio, it is 
found from (71) that 

J1 = J2 = I3  = 0,  (75) 2 0  2 0  I l = r  a i ,  I2 = J3 = 7r 

where only the lowest-order terms in v ' / u  are kept (see appendix 2). From (62), (73) 
and (74), it can be shown that lB,I << lBnl, IBel, and hence from (75) and (A2.5) one finds 

B, = 0,  (76) 

where 

The magnetic field in (76) can be derived approximately from the magnetic scalar 
potential 

v = (ab/l)(u'/v)'sin 0, (78) 

where 
satisfies huB, = constant and hence it contributes a component 

= 18 - p q ,  provided v/u << 1. The superimposed toroidal magnetic field 

B, = B O a / h u  =Bo, (79) 

where the constant Bo >> b usually. Consider the stream function defined by 

V = ~ B o ( v ' / v ) 2 - ( b ~ ' 2 / p ) ( v ' / ~ ) 1  COS 0. (80) 

It is straightforward to verify that this is, in fact, the stream function for the total 
magnetic field obtained from (76) and (79). That is, B *VV = 0 and V = constant 
describes magnetic surfaces. For 1 = 2, these are elliptical contours, for 1 = 3 these are 
'rounded' triangles (see figure 3) etc. 

6. Summary and discussion 

From a systematic derivation of the magnetic vector potential and magnetic field in two 
systems of toroidal coordinates, it has been shown that toroidal coordinates have the 
advantage over quasi-toroidal coordinates, in that the necessary integrations can be 
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Figure 3. Magnetic surfaces specified by equation (80) for the case where 1 = 3, p = 8, aspect 
ratio U' = 8 and b/Bo = 0.05. Only the intermediate surfaces between the inner and outer 
surfaces are reliable approximate magnetic surfaces for the I = 3 canonical stellarator field. 

performed exactly by series expansions in terms of functions which are natural to the 
torus. The method of integration of the Biot-Savart law ensures that the boundary 
conditions are satisfied explicitly. This offers an alternative method to the calculation of 
magnetic fields due to helical currents on a torus, which has normally been done by 
direct numerical computations (see e.g. Gibson (1967), Gourdon et aE (1968), Blamey 
et a1 (1981)). In the case of a canonical stellarator of arbitrary l, an exact analytic 
representation of the magnetic field has been obtained, albeit in terms of infinite series 
involving the generalised Legendre functions. 

The discussion on helical windings showed that there is no unique definition of a 
uniform helix on the torus; a number of reasonable definitions are possible, depending 
on the system of coordinates used. Among these, the uniform helical windings defined 
by da/dip = constant (see equation (56)) ,  being intermediate between the classical and 
the canonical windings, deserve some attention. For practical purposes, any regular 
helical winding inay be regarded as a modulation of some reference uniform helical 
winding, such as the canonical winding. 

From a simple application of the analytic representation of a canonical stellarator 
field, useful approximate expressions for the magnetic field and magnetic surfaces have 
been derived, but only in the intermediate region away from the centre and periphery of 
the toroidal chamber. These expressions correspond closely to those of a straight 
circular cylinder. By the inclusion of more terms in the series representation, further 
analysis can be carried out to obtain expressions which are valid for a more extended 
region. Further analysis and more detailed computations of various possible cases will 
be presented separately elsewhere. 
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Appendix 1. Geometric relations 

Inversion of the definitions (6 )  shows that 

r + R  cosx a sin x 
sin 6 = -- 

R + r c o s X '  R + r c o s X '  
COS e = 

from which it follows, bearing in mind R 2  = a2 + r2, that 

d6/dx = a/(R + r cos x). 
Direct integration shows that 

e = 2 tan-'( tan f). 
On the other hand, Fourier analysis of the right-hand side of (A1.2) shows 

R - a  " CO a 
R + r c o s X  - 1 + 2  n = l  1 (-I)(--) r 

cos nx, 

from which follows, on integration, 

CO (-1)" R- 
e = x + 2  1 - ( - a)n sin nx. 

n = l  n 

(Al.1) 

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 

Equation (57) in the text follows from the application of (A1.3) and (A1.5) to the 
toroidal surface p = po or q = qo, where R = Ro, r = po and x = 5. 

On examining triangles in figure 1, it may be shown from the sine rule that 

(R + a ) / r  =[sin(O+x-a)]/sin(a-e) =s inx  cot(cr-O)-cosX 

r/(R - a )  = (sin a)/sin(x - CT) = sin x cot(x - CT) -cos x. 

(A1.6) 
and 

(A1.7) 

Since x is arbitrary and R 2  - a2 = r2, one deduces cot(a - e)  = cot(x -CT) with the 
appropriate solution 

u - e = x - a .  (A1.8) 

Equation (56) in the text follows from the application of this result to the surface of the 
toroidal chamber where x = 5. 

Appendix 2. Approximate expansion coefficients 

Approximate expressions for the expansion coefficients occurring in (7 1) can be 
obtained from the asymptotic properties of the generalised Legendre functions. 
Considering only the lowest-order terms in the inverse aspect ratio (m  = 0), then if 1 2 2, 
it is necessary only to obtain approximate expressions for a:, with n # 0, on account of 
the delta functions in (71). 

It can be shown (Robin 1958) from the appropriate series representations of the 
generalised Legendre functions that when U >> 1, one has asymptotic representations 

(A2.1) 
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and 

(A2.2) 

where s is an integer and the accuracy is O ( U - ~ ) .  Application of these expressions to 
(45) shows 

aon =- 2J2 - ’ ; E ; / 2 (  1 +&)(:y ( n  # 0 ) .  
T U V  

(A2.3) 

Now since the summation 

‘f E ,  exp(-sp) = $ coth (A2.4) 
s = o  

and p = l / v ’  when U >> U’, the sum can be approximated by U‘. This result, together with 
the definition (68 ) ,  gives 

(A2.5) 
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